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Abstract This article aims to dispel confusions about the

definition of size consistency as well as some incompati-

bility that exists between different criteria for judging

whether an electronic structure theory is size consistent and

thus yields energies and other quantities having correct

asymptotic size dependence. It introduces extensive and

intensive diagram theorems, which provide unambiguous

sufficient conditions for size consistency for extensive and

intensive quantities, respectively, stipulated in terms of

diagrammatic topology and vertex makeup. The underlying

algebraic size-consistency criterion is described, which

relies on the polynomial dependence of terms in the for-

malism on the number of wave vector sampling points in

Brillouin-zone integrations. The physical meanings of two

types of normalization of excitation amplitudes in electron-

correlation theories, namely, the intermediate and standard

normalization, are revealed. The amplitudes of the operator

that describes an extensive quantity (the extensive opera-

tor) are subject to the intermediate normalization, while

those of the operator that corresponds to an intensive

quantity (the intensive operator) must be normalized. The

article also introduces the extensive-intensive consistency

theorem which specifies the relationship between the

spaces of determinants reached by the extensive and

intensive operators in a size-consistent method for inten-

sive quantities. Furthermore, a more fundamental question

is addressed as to what makes energies extensive and thus

an application of thermodynamics to chemistry valid. It is

shown that the energy of an electrically neutral, periodic,

non-metallic solid is extensive. On this basis, a strictly

size-consistent redefinition of the Hartree–Fock theory is

proposed.

Keywords Size consistency � Electronic structure

theory � Diagrams � Thermodynamic limit � Extensive

diagram theorem � Intensive diagram theorem

1 Significance and definitions

An observable thermochemical quantity is either extensive

or intensive [1]. Extensive quantities include energy,

entropy, and mass and are asymptotically proportional to

the volume of a chemical system. Intensive quantities such

as temperature, pressure, and chemical potential are

asymptotically independent of the volume. Computational

methods that are meant to predict these quantities accu-

rately must, in the very least, ensure that the predicted

values satisfy these asymptotic conditions. The methods

that do not meet this basic requirement (size consistency)

suffer from ever increasing errors in their prediction with

volume and reduce to being nonsensical in the thermody-

namic (infinite-volume) limit. Size consistency is thus one

of the most important design principles of computational

methods for chemistry and a distinguishing feature of

genuine many-body techniques. The definition of size

consistency we adopt here is given below.

Definition 1 (size consistency) [2]: A size-consistent

method yields a total energy (or some other extensive

quantity) of an electrically neutral, periodic solid which is

asymptotically proportional to its volume (‘‘size’’) under

the periodic boundary condition and an excitation energy

(or some other intensive quantity) in the same system
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which is asymptotically constant with size. When varying

the size, the number density should be kept constant.

The term ‘‘size extensivity’’ is used in this article to

mean size consistency for extensive quantities and the term

‘‘size intensivity’’ to mean size consistency for intensive

quantities. For example, a size-consistent excited-state

method must be size extensive for total energies and size

intensive for excitation energies.

In chemistry, there have been two size-consistency cri-

teria [2–4], which are, however, not only inequivalent but

also mutually inconsistent with each other. One is the

K-dependence [4–9] and related diagrammatic criteria

[2, 5, 7, 10–12], which are the only accepted ones in

condensed matter and nuclear physics. The other is the

supermolecule criterion [3, 13, 14], which has been said to

have the advantage of being applicable numerically [3].

These are summarized as follows.

Definition 2 (the K-dependence criterion): The number

(K) of wave vector (k vector) sampling points in the

Brillouin zone (BZ) is a direct measure of system size

under the periodic boundary condition (see below). Size

consistency of a method can be proved or disproved by

analyzing the polynomial dependence of terms in its for-

mulas on K. Each of the equations defining a size-consis-

tent method must consist only of terms with the same

K dependence. Furthermore, the equations defining exten-

sive and intensive observables must have the asymptotic K1

and K0 dependence, respectively.

Definition 3 (the supermolecule criterion): Let EA and

EB be the total energies (or other extensive quantities) of

isolated molecules A and B, respectively, and EAB be the

total energy of supermolecule AB that consists of mole-

cules A and B between which there is no interaction. A

size-consistent method must yield total energies of these

three molecules so that they satisfy the additive separa-

bility condition: EAB = EA ? EB. Each of the excitation

energies (or other intensive quantities) of the isolated

constituent molecules obtained by a size-consistent method

must be found among the excitation energies of the

supermolecule.

It should be cautioned that, in the literature, the term

size extensivity is often associated with the K-dependence

criterion and the term size consistency with the super-

molecule criterion, which is not the nomenclature we

adopt. Our standpoint is that there is only one valid crite-

rion of size consistency and it is the K-dependence and

related diagrammatic criteria. Since it is entirely possible

for a method to be size consistent for intensive quantities

but not for extensive quantities or vice versa, we do not use

the terms size extensivity and size consistency inter-

changeably as has been done elsewhere.

2 Supermolecule criterion

What is wrong with the supermolecule criterion? One of its

conceptual as well as practical problems is that it is not

always possible to prevent molecules A and B, which are

presumably infinitely separated, from interacting. Suppose

A and B are different molecules with nA and nB electrons,

respectively. An electron can transfer from B to A as soon

as supermolecule AB is formed if the electron affinity of A

exceeds the ionization energy of B. In this circumstance, a

size-consistent method will fail the supermolecule test

because

EABðnAþnBÞ ¼ EAðnAþ1Þ þ EBðnB�1Þ 6¼ EAðnAÞ þ EBðnBÞ; ð1Þ

where the numbers of electrons are given in the

parentheses.

One may argue that we should consider a supermolecule

made of identical molecules so that there cannot be elec-

tron transfer. However, because the orbitals of one of the

constituent molecules and those of the other are now

degenerate, the issue of orbital invariance comes into play

[4, 10]. If the total energies obtained by the method are not

invariant with respect to rotation among occupied orbitals

and/or to rotation among virtual orbitals, the total energies

of the supermolecule cannot be determined uniquely

because degenerate orbitals are freely rotated among

themselves. In other words, a size-consistent method can

fail the supermolecule test if the method lacks the property

of orbital invariance. Orbital invariance is an important

property, but it is an altogether different issue from size

consistency.

The previous examples are the cases when size-consis-

tent methods fail to satisfy the supermolecule criterion. We

can also come up with the converse examples. Configura-

tion-interaction singles and doubles (CISD) is not size

consistent but is nevertheless exact for up to two-electron

systems. CISD, therefore, satisfies the supermolecule cri-

terion for any supermolecule with two electrons or less.

Another example is a supermolecule of two nuclei with

no electrons. Any electronic structure method passes this

supermolecule test and is judged size consistent because

EAB = EA = EB = 0, which is of course a nonsensical

conclusion. One may argue that this is a far-fetched

example with no physical significance. To the contrary, it

touches upon the fundamental question about the origin of

extensivity or the existence of a thermodynamic limit of

energy density [15–20] discussed in Sect. 5. The total

energy of a lattice of like-charged particles grows as

V5/3 with volume V and is, therefore, non-extensive. The

supermolecule criterion for this highly charged system is

doubly wrong as it suggests that any method is size

extensive for total energies when the latter are not even

supposed to be extensive!
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The existence of these counterexamples indicates that

the supermolecule criterion is neither a sufficient nor nec-

essary condition for size consistency. It cannot be applied

uniformly to the formalism (as opposed to an implemen-

tation) of a method and it gives unreliable results

depending on the details such as the choice of supermol-

ecule, the distribution of electrons among constituent

molecules, the particular excited state considered, whether

or not the method lacks orbital invariance, and so forth, and

is thus misleading. Even when a method is shown to pass

many such tests, it only provides a piece of circumstantial

evidence for the exact proportionality of an extensive

quantity (or exact constancy of an intensive quantity) with

respect to the number of non-interacting particles, which

falls short of the definition of size consistency given above,

which pertains to the asymptotic behavior of extensive and

intensive quantities for a system of interacting particles.

Finally, it is sometimes stated incorrectly that for a

method to be size consistent, a wave function of super-

molecule AB must be multiplicatively separable into wave

functions of molecules A and B, namely,

WAB ¼ WAWB: ð2Þ

As we shall show later, this is not necessary for the energy

to be additively separable for the supermolecule. For

instance, the first-order Møller–Plesset perturbation (MP1)

wave function does not have an exponential structure and is

not multiplicatively separable. Nevertheless, its corre-

sponding second-order Møller–Plesset perturbation (MP2)

energy remains size consistent (see Sect. 4.1).

3 K-dependence criterion

3.1 Localized and delocalized bases

In a spatially localized basis, the total energy can be

defined as a sum of local energies of molecular fragments,

each of which is computed using the local basis around the

fragment. An excitation energy is obtained as one occur-

ring in a molecular fragment using its local basis. In this

way, the total energy is by construction extensive and

excitation energies intensive regardless of how the local

energies and local excitation energies are obtained. In other

words, it is more instructive to use a completely delocal-

ized basis when determining the intrinsic size consistency

or its lack of a method.

Symmetry-adapted orbitals for an infinitely extended,

periodic system such as canonical HF orbitals form a de-

localized basis. The canonical HF spin-orbital in the pth

band with the wave vector kp in a one-dimensional periodic

system is given by

upkp
ðrÞ ¼ K�1=2

X

l

X

m

C
lkp

pkp
expðimkpaÞvlðr� maÞ; ð3Þ

where C
lkp

pkp
is an expansion coefficient, a is the lattice

vector (with length a), and vlðr� maÞ is the lth atomic

orbital (AO) centered in the mth unit cell. In the underlying

periodic boundary condition, an infinite chain is regarded

as a mathematical ring of K unit cells. Adopting the unit of

length in which a = p, kp can take one of the following K

distinct values:

kp ¼
2n

K
; n ¼ 0; . . .;K � 1: ð4Þ

Hence, K is a direct measure of the system’s volume (size)

and the polynomial dependence on K (the scaling property)

of a quantity gives its size dependence [9]. The factor of

K-1/2 in Eq. (3) arises from the normalization of upkp
:

The Fock and antisymmetrized two-electron integrals in

this basis are given by

f
pkp

qkq
¼ K0

X

l;m

X

m

C
lkp�
pkp

C
mkq

qkq
expðimkqaÞf lð0Þ

mðmÞ ; ð5Þ

v
pkpqkq

rkrsks
¼ K�1

X

j;k;l;m

X

m1;m2;m3

C
jkp�
pkp

C
kkq�
qkq

Clkr

rkr
Cmks

sks

� expfið�m1kq þ m2kr þ m3ksÞagvjð0Þkðm1Þ
lðm2Þmðm3Þ; ð6Þ

where f
lð0Þ
mðmÞ and v

jð0Þkðm1Þ
lðm2Þmðm3Þ are Fock and antisymmetrized

two-electron integrals in the AO basis. The quantities in the

delocalized basis vanish identically unless appropriate

momentum conservation conditions are satisfied, which are

kp ¼ kq þ 2n; ð7Þ

kp þ kq ¼ kr þ ks þ 2n; ð8Þ

respectively, for f
pkp

qkq
and v

pkpqkq

rkrsks
; where n is an integer.

Equations (5) and (6) indicate that f
pkp

qkq
and v

pkpqkq

rkrsks
exhibit

the asymptotic size dependence of K0 and K-1, respectively

[9], insofar as the lattice sums in these equations converge

at finite, K-independent values. As shown in Sect. 5, with

proper definitions of these integrals, this is indeed the case

for a non-metallic solid with an electrically neutral unit

cell. The K0 scaling of f
pkp

qkq
and K-1 scaling of v

pkpqkq

rkrsks

constitute the basis of the following analyses [5].

3.2 Hartree–Fock

Let us use this K-dependence argument to prove the size

consistency (i.e., extensivity of the total energies in the

ground states and intensivity of the orbital energies) of the

HF method. The total energy (which includes the nuclear

repulsion energy; see Sect. 5) is given by
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EHF ¼
X

i

X

ki

f iki

iki
� 1

2

X

i;j

X

ki;kj

v
ikijkj

ikijkj
: ð9Þ

We use in the above equation and hereafter the convention

in which i, j, k, and l label occupied energy bands,

a, b, c, and d virtual energy bands, and p, q, r, s, t,

and u either. The first term has the summation over ki,

which gives rise to a factor of K1, and f iki

iki
; which is a K0

quantity. This term is thus proportional to K1 or propor-

tional to size and is, therefore, extensive. Similarly, the

second term can be shown to be a K1 quantity and exten-

sive because the two-fold k summation gives rise to a factor

of K2 and v
ikijkj

ikijkj
scales as K-1.

The HF orbital energies, f iki

iki
and f aka

aka
; are related to

ionization energies and electron affinities. They form

energy bands. The orbital energy differences, f aka

aka
� f iki

iki
;

may also be considered approximations to excitation

energies. Since f
pkp

qkq
scales as K0, the HF approximations to

these are intensive, as they should be. Together, the HF

method is size consistent. It may be emphasized that the

above proves the asymptotic correct size dependence of

observables for a system of interacting particles. An

extension to two- and three-dimensional solids is trivial.

Equation (9) can be diagrammatically expressed as

follows [5, 12]:

ð10Þ

In these diagrams of the Hugenholtz type, each dot

symbol is called a vertex and represents either an inte-

gral or an excitation amplitude (collectively called a

tensor). Each arc or line (called an edge) denotes a spin-

orbital index. The number of edges attached to a vertex

is called the order of the vertex. An edge connecting two

vertexes signifies a contraction of two tensors by the

common spin-orbital index represented by the edge. In

this particular case, the vertexes are drawn as filled

circles, each of which denoting either a Fock integral if

two edges are associated with it or a two-electron inte-

gral if four edges are attached. The first term in the

right-hand side of Eq. (9) has only one tensor (f) with

two indexes, which happen to be the same (iki). The

corresponding diagram (above, left) has one vertex (filled

circle) and its two edges meet to make one loop. The

second term of Eq. (9) is converted to one vertex

(v) with two loops (iki and jkj) (above, right). The dia-

grams are closed and connected.

Definition 4 (closed and open diagrams): An edge is

called external if one of its termini is not attached to any

vertex. Otherwise, an edge is internal. A diagram is closed

if it contains only internal edges and open if it has one or

more external edges.

Definition 5 (connected and disconnected diagrams): A

diagram is connected if there is a path between any two

vertexes [21]. Otherwise, it is disconnected.

In the following, we will show that the criteria of size

consistency using the K-dependence argument can be cast

into some rules on the topology of the diagrams and the

makeup of their vertexes. We do not document here the

precise rules of diagrammatic evaluations, which are not

essential for our purpose and can be found in March et al.

[5] as well as in Shavitt and Bartlett [12].

3.3 Coupled-cluster doubles

Let us now turn to the question of size extensivity of

coupled-cluster doubles (CCD) for correlation energies in

the ground states [10, 22]. In this approximation [11], a

wave function is obtained by acting an exponential exci-

tation operator on a reference wave function, which we

take to be a HF wave function, jU0i: Thus,

jWi ¼ exp T̂2

� �
jU0i

¼ 1þ T̂2 þ T̂2
2=2!þ T̂3

2=3!þ . . .
� �

jU0i;
ð11Þ

with the two-electron excitation operator defined by its

action,

T̂2jU0i ¼
1

ð2!Þ2
X

i;j;a;b

X

ki;kj;ka

takabkb

ikijkj
jUakabkb

ikijkj
i; ð12Þ

where jUakabkb

ikijkj
i is a doubly excited determinant. Note that

only three of the k vectors of a non-vanishing amplitude,

takabkb

ikijkj
; are linearly independent and appear as the summa-

tion indexes. Equation (11) is an example of the use of the

intermediate normalization [14]: jWi is not normalized, but

jU0i is. In Sect. 4.1, we will reveal the significance of this

normalization scheme in relation to size extensivity.

To arrive at the equations that determine the correlation

energy and amplitudes, we insist that jWi satisfy the

Schrödinger equation in the space spanned by jU0i and its

doubly excited determinants, namely,

hU0jĤ exp T̂2

� �
jU0i ¼ hU0jECCD exp T̂2

� �
jU0i; ð13Þ

hUakabkb

ikijkj
jĤ exp T̂2

� �
jU0i ¼ hUakabkb

ikijkj
jECCD exp T̂2

� �
jU0i:

ð14Þ

This projection in conjunction with the intermediate

normalization is not the only way to define takabkb

ikijkj
; but it

is the most successful one for a good reason, which will be

discussed in Sect. 4.1. The Hamiltonian has up to two-body

interactions and, therefore, does not allow determinants
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that differ by more than two spin-orbitals to interact. Using

this fact, we can simplify the above two equations to

hU0jĤ 1þ T̂2

� �
jU0i ¼ ECCD; ð15Þ

hUakabkb

ikijkj
jĤ 1þ T̂2 þ T̂2

2=2!
� �

jU0i ¼ ECCDtakabkb

ikijkj
: ð16Þ

When the integrals are evaluated, they reduce to the sum-

of-product expressions,

EHF þ
1

4

X

i;j;a;b

X

ki;kj;ka

v
ikijkj

akabkb
takabkb

ikijkj
¼ ECCD ð17Þ

and

vakabkb

ikijkj
� Pi=j

X

k

f kkk

iki
takabkb

kkkjkj
þ Pa=b

X

c

f aka

ckc
tckcbkb

ikijkj

þ 1

2

X

k;l

X

kk

vkkklkl

ikijkj
takabkb

kkklkl
þ 1

2

X

c;d

X

kc

vakabkb

ckcdkd
tckcdkd

ikijkj

þ Pa=bPi=j

X

k;c

X

kk

vakakkk

ikickc
tckcbkb

kkkjkj

þ 1

4

X

k;l;c;d

X

kk ;kc

vkkklkl

ckcdkd
tckcdkd

ikijkj
takabkb

kkklkl

� 1

2
Pa=bPi=j

X

k;l;c;d

X

kk ;kc

vkkklkl

ckcdkd
takackc

kkkjkj
tdkdbkb

ikilkl

� 1

2
Pa=b

X

k;l;c;d

X

kk ;kc

vkkklkl

ckcdkd
tckcbkb

kkklkl
takadkd

ikijkj

� 1

2
Pi=j

X

k;l;c;d

X

kk ;kc

vkkklkl

ckcdkd
tckcdkd

kkkjkj
takabkb

ikilkl

þ EHFtakabkb

ikijkj
þ 1

4

X

k;l;c;d

X

kk ;kl;kc

vkkklkl

ckcdkd
tckcdkd

kkklkl
takabkb

ikijkj

¼ ECCDtakabkb

ikijkj
; ð18Þ

where P’s are index permutation operators, whose precise

definitions [12] are unimportant here.

Equation (18) is solved for the amplitudes of the T̂2

operator, which are then substituted in Eq. (17) to yield the

CCD energy. For the method to be size extensive, all terms

in Eq. (18) must exhibit the mutually consistent K depen-

dence and, furthermore, all terms in Eq. (17) must scale as

K1. Surprisingly, the first of these conditions is not met, at

least manifestly, by Eq. (18).

Let us first analyze Eq. (17). As we have established in

the previous subsection, EHF is extensive. We, therefore,

only need the second term to scale as K1 and, for this to be

the case, we must require takabkb

ikijkj
to be an asymptotic K-1

quantity because v
ikijkj

akabkb
scales as K-1 and the three-fold k

summation gives rise to a factor of K3. However, if we

assume this, we find that the last two terms in the left-hand

side of Eq. (18) as well as the right-hand side scale dif-

ferently (as K0) from the rest (as K-1).

This apparent violation of size extensivity can be

removed by noticing that these K0 terms cancel with each

other exactly between left- and right-hand sides. Using

Eq. (17), we can rewrite the last two terms of the left-hand

side of Eq. (18) as

EHF þ
1

4

X

k;l;c;d

X

kk ;kl;kc

vkkklkl

ckcdkd
tckcdkd

kkklkl

( )
takabkb

ikijkj
¼ ECCDtakabkb

ikijkj
:

ð19Þ

Thus, their K dependence turns out to be inconsequential

to our analysis. Note that these terms with inconsistent

K dependence are disconnected (see below), which

algebraically means that they are simple products rather

than contractions with at least one common contraction

index. Eliminating these mutually canceling, disconnected

terms, we can rewrite Eq. (18) into a manifestly size-

extensive form:

vakabkb

ikijkj
� Pi=j

X

k

f kkk

iki
takabkb

kkkjkj
þ Pa=b

X

c

f aka

ckc
tckcbkb

ikijkj

þ 1

2

X

k;l

X

kk

vkkklkl

ikijkj
takabkb

kkklkl
þ 1

2

X

c;d

X

kc

vakabkb

ckcdkd
tckcdkd

ikijkj

þ Pa=bPi=j

X

k;c

X

kk

vakakkk

ikickc
tckcbkb

kkkjkj

þ 1

4

X

k;l;c;d

X

kk ;kc

vkkklkl

ckcdkd
tckcdkd

ikijkj
takabkb

kkklkl

� 1

2
Pa=bPi=j

X

k;l;c;d

X

kk ;kc

vkkklkl

ckcdkd
takackc

kkkjkj
tdkdbkb

ikilkl

� 1

2
Pa=b

X

k;l;c;d

X

kk ;kc

vkkklkl

ckcdkd
tckcbkb

kkklkl
takadkd

ikijkj

� 1

2
Pi=j

X

k;l;c;d

X

kk ;kc

vkkklkl

ckcdkd
tckcdkd

kkkjkj
takabkb

ikilkl
¼ 0: ð20Þ

Every term in the left-hand side scales as K-1 insofar as the

K-1 dependence of takabkb

ikijkj
is assumed. This last assumption,

which is validated by Eq. (20), in turn proves the exten-

sivity of the CCD energy given by Eq. (17).

Equation (17) is diagrammatically expressed by closed,

connected diagrams:

ð21Þ

where the open circle with four edges is takabkb

ikijkj
and the filled

circle is v
ikijkj

akabkb
: An upwards (downwards) edge denotes a

virtual (occupied) spin-orbital and an edge with ambiguous

directionality as in Eq. (10) corresponds to an occupied

spin-orbital. Hence, the above diagram graphically
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represents the contraction of takabkb

ikijkj
and v

ikijkj

akabkb
with four

common indexes, iki; jkj; aka; and bkb, and corresponds to

the second term in Eq. (17). For each vertex, we must

associate a momentum conservation condition so that the

corresponding tensor is non-vanishing. The satisfaction of

the momentum conservation condition for takabkb

ikijkj
guarantees

the same for v
ikijkj

akabkb
and vice versa. Generally, n vertexes

introduce n momentum conservation conditions. If and

only if the diagram is connected, one of these n conditions

is redundant and automatically satisfied if the other n - 1

conditions are satisfied.

The graphical representation of Eq. (20) consists of open

diagrams with exactly four external edges. It is given by

ð22Þ

Each diagram is connected. In contrast, the terms that have

the incorrect K dependence and have been eliminated after

mutual cancelation are disconnected:

ð23Þ

As we have established, each diagram in Eq. (22) scales as

K-1, whereas each in Eq. (23) as K0. We can generalize

these observations into the following rule:

Rule 1 (the K dependence of extensive diagrams) [5, 7, 8]:

A connected diagram with no intensive vertex (see Rule 3

for the definition of an intensive vertex) and n external

edges scales as K1-n/2. This applies to a single vertex and

to a connected diagram that consists of two or more ver-

texes as well as to a connected subdiagram in an overall

disconnected diagram.

Before discussing how this rule comes about, let us

apply it to the diagrams in the three equations immediately

above. The total energy diagrams in Eqs. (10) and (21) are

closed and connected. Thus, according to this rule, they

must scale as K1-0/2 = K1 and are extensive. All diagrams

in Eq. (22) are open, connected diagrams with four external

edges. The rule predicts that they scale consistently as

K1-4/2 = K-1. On the other hand, the disconnected dia-

grams in Eq. (23) are composed of two connected subdi-

agrams, one scaling as K1 and the other K-1, according

to the rule. They, therefore, inevitably scale as K0 and

differently from open, connected diagrams with the same

number of external edges (K-1).

Clearly, size extensivity of a method is judged by

inspecting the topology of diagrams that appear in its

formalism.

Rule 2 (the extensive diagram theorem) [5, 7, 8]: A

method is size extensive if the following two conditions are

met. Firstly, its expression for an extensive quantity can be

cast into the form that consists of only connected diagrams

with no intensive vertex. Secondly, its equations that

determine excitation amplitudes can be brought to the form

that consists of only connected diagrams with no intensive

vertex or, less commonly, of only disconnected diagrams

with no intensive vertex having an equal number of con-

nected subdiagrams. This criterion is equivalent to that

based on the K-dependence criterion.

This is an immediate consequence of Rule 1 and is a

sufficient condition for size extensivity. Recognize that an

equation can only contain diagrams with an equal number

of external edges. The K dependence of a disconnected

diagram that consists of m connected subdiagrams with

n1; . . .; nm external edges is

Ym

i

K1�ni=2 ¼ Km�n=2; ð24Þ

where n is the total number of external edges of the dia-

gram. Hence, for all diagrams in an equation to have the

same K dependence, they may be disconnected but must

consist of the same number (m) of connected subdiagrams.

When m = 1, all diagrams are connected. The terms in an

energy expression must be closed (n = 0) and scale as K1

and thus we require m = 1 (connected). To avoid misun-

derstanding, this is not the celebrated linked-cluster theo-

rem of Goldstone [23], which is certainly based on the

special case (m = 1) of the above rule, but aims at proving

the size extensivity of the Møller–Plesset perturbation

(MP) series to all orders.

Let us return to the question of how Rule 1 can be

derived [5, 7, 8]. The rule is proved by mathematical

induction for connected diagrams with two or more ver-

texes. The basis is that it holds for single extensive vertexes

(see Rule 3 for the definition of an extensive vertex), which

is indeed the case with f
pkp

qkq
and v

pkpqkq

rkrsks
: Consider a con-

nected diagram that consists of m vertexes with orders

e1; . . .; em and n external edges. The number of internal

edges l is given by [21]

l ¼
Xm

i¼1

ei=2� n=2: ð25Þ

There are m momentum conservation conditions associated

with m vertexes, but one of them is redundant because of
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the connectedness. Therefore, among l internal edges and

the same number of k vectors, m - 1 of them are

constrained by the m - 1 non-redundant momentum

conservation conditions. Consequently, the number of k

vectors that appear as the summation indexes (h) is given

by

h ¼ l� ðm� 1Þ: ð26Þ

Remembering that a single vertex of order ei scales as

K1�ei=2; we find the exponent of the K dependence of the

diagram to be

Xm

i¼1

ð1� ei=2Þ þ h ¼
Xm

i¼1

ð1� ei=2Þ

þ
Xm

i¼1

ei=2� n=2� ðm� 1Þ ¼ 1� n=2: ð27Þ

This proves Rule 1.

3.4 Configuration-interaction doubles

Configuration-interaction doubles (CID) is not size exten-

sive for correlation energies in the ground states [12, 14].

This can be proved readily by slightly modifying the

equations in the previous subsection. A CID wave function

is written as

jWi ¼ 1þ T̂2

� �
jU0i; ð28Þ

where jU0i is a HF wave function. Just as in CCD, we can

use the intermediate normalization and projection to arrive

at the following equations to solve for ftakabkb

ikijkj
g and ECID:

hU0jĤ 1þ T̂2

� �
jU0i ¼ ECID; ð29Þ

hUakabkb

ikijkj
jĤ 1þ T̂2

� �
jU0i ¼ ECIDtakabkb

ikijkj
: ð30Þ

Alternatively, one can use the variational principle and

minimize hWjĤjWi=hWjWi with respect to variation in

ftakabkb

ikijkj
g: This leads to the identical set of equations as

shown above.

Expanded, they become the following sum-of-product

expressions:

EHF þ
1

4

X

i;j;a;b

X

ki;kj;ka

v
ikijkj

akabkb
takabkb

ikijkj
¼ ECID ð31Þ

and

vakabkb

ikijkj
� Pi=j

X

k

f kkk

iki
takabkb

kkkjkj
þ Pa=b

X

c

f aka

ckc
tckcbkb

ikijkj

þ 1

2

X

k;l

X

kk

vkkklkl

ikijkj
takabkb

kkklkl
þ 1

2

X

c;d

X

kc

vakabkb

ckcdkd
tckcdkd

ikijkj

þ Pa=bPi=j

X

k;c

X

kk

vakakkk

ikickc
tckcbkb

kkkjkj

þ EHFtakabkb

ikijkj
¼ ECIDtakabkb

ikijkj
: ð32Þ

Note that Eq. (31) that defines ECID and Eq. (17) for ECCD

have the identical form; hence, the energy expression that

arises from the intermediate normalization and projection

does not by itself cause the lack of size extensivity in CID.

The material difference must exist in the amplitude equa-

tions, Eqs. (32) and (18).

Let the asymptotic dependence of takabkb

ikijkj
be Kn. The

first term in Eq. (32) scales as K-1. The second through

the penultimate terms are asymptotically proportional to

Kn, whereas the last term and the right-hand side scale

as Kn?1. In the limit K !1; the Kn terms are infini-

tesimally small as compared to the Kn?1 terms and

hence,

takabkb

ikijkj
¼ vakabkb

ikijkj
= ECID � EHFð Þ

¼ 4vakabkb

ikijkj
=
X

k;l;c;d

X

kk ;kl;kc

vkkklkl

ckcdkd
tckcdkd

kkklkl
; ð33Þ

where we have used Eq. (31) in the second equality. The

leftmost of this equation scales as Kn by assumption,

whereas the rightmost as K-n-3. Therefore, takabkb

ikijkj
is a K-3/2

quantity, an ominous sign as it already violates Rule 1.

Substituting this K dependence in Eq. (31), we find the CID

correlation energy, ECID - EHF, to have the non-physical

size dependence of K1/2 [12, 14]. This proves the lack of

size extensivity in CID for correlation energies. In the limit

K !1;ECID ¼ EHF:

The diagrammatic representation of Eq. (31) is identical

to Eq. (21) (‘‘CCD’’ should be read ‘‘CID’’) and is con-

nected. That of Eq. (32) is

(34)
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from which mutually canceling contributions have already

been deleted. With Rule 2, the lack of size extensivity in

this equation can be seen immediately. The disconnected

right-hand side scales differently from the connected left-

hand side. Does neglecting the right-hand side restore size

extensivity in CID? The answer is yes and the method is

now called linearized CCD (LCCD) or D-MBPT(1) [14,

24]. LCCD does not have a wave function, but is clearly

size extensive from Rule 2. This underscores the inade-

quacy of defining size consistency on the basis of multi-

plicative separability of wave functions because some

methods do not even have a wave function.

3.5 Perturbation theories

We partition the Hamiltonian Ĥ into a zeroth-order part Ĥ0

and the remainder V̂ ;

Ĥ ¼ Ĥ0 þ V̂; ð35Þ

where Ĥ0 is chosen such that we have all of its

eigenfunctions and eigenvalues that are size consistent.

One such Ĥ0 is the sum of Fock operators, which satisfies

Ĥ0jU0i ¼ E0jU0i; ð36Þ

Ĥ0jUaka

iki
i ¼ E0 þ f aka

aka
� f iki

iki

� �
jUaka

iki
i; ð37Þ

Ĥ0jUakabkb

ikijkj
i ¼ E0þ f aka

aka
þ f bkb

bkb
� f iki

iki
� f

jkj

jkj

� �
jUakabkb

ikijkj
i; ð38Þ

etc., with E0 being the sum of all occupied orbital energies,

E0 ¼
X

i

X

ki

f iki

iki
: ð39Þ

Clearly, E0 is extensive (K1) and an energy difference

(excitation energy) between an excited state and the ground

state is intensive (K0).

We seek approximate solutions of the Schrödinger

equation,

ĤjWi ¼ EjWi; ð40Þ

employing, once again, the intermediate normalization,

hU0jWi ¼ 1; ð41Þ

which implies

hU0jĤjWi ¼ E; ð42Þ

hU0jV̂jWi ¼ E � E0: ð43Þ

For future convenience, we introduce the projection

operator, Q̂; defined by

Q̂ ¼ 1� jU0ihU0j: ð44Þ

Using Eq. (35), we can rewrite the Schrödinger equation

into the form [5],

ELS � Ĥ0

� �
jWi ¼ ELS � E þ V̂

� �
jWi; ð45Þ

which is true for any arbitrary value of the level shift

parameter, ELS. This in conjunction with the intermediate

normalization leads to the perturbation expansion of the

wave function and energy,

jWi ¼ jU0i þ jWð1Þi þ jWð2Þi þ . . .; ð46Þ

E ¼ E0 þ Eð1Þ þ Eð2Þ þ . . .; ð47Þ

with

jWðnÞi ¼ Q̂ ELS � Ĥ0

� ��1
Q̂ ELS � E þ V̂
� �n on

jU0i; ð48Þ

EðnÞ ¼ hU0jV̂jWðn�1Þi: ð49Þ

One of the important objectives here is to find a suitable

value of ELS that ensures rapid convergence of these series,

while maintaining the correct size dependence for each

truncated sum.

One obvious choice is ELS = E, which defines the

Brillouin–Wigner (BW) perturbation theory [5, 12], a

method well-known to be not size extensive and that has,

therefore, never been widely used. The first- and second-

order energies (BW1 and BW2) are respectively given by

E
ð1Þ
BW ¼ hU0jV̂jU0i ¼ �

1

2

X

i;j

X

ki;kj

v
ikijkj

ikijkj
; ð50Þ

E
ð2Þ
BW ¼

1

4

X

i;j;a;b

X

ki;kj;ka

hU0jV̂ jUakabkb

ikijkj
ihUakabkb

ikijkj
jV̂ jU0i

E � E0 þ f iki

iki
þ f

jkj

jkj
� f aka

aka
� f bkb

bkb

¼ 1

4

X

i;j;a;b

X

ki;kj;ka

v
ikijkj

akabkb
vakabkb

ikijkj

E � E0 þ f iki

iki
þ f

jkj

jkj
� f aka

aka
� f bkb

bkb

:

ð51Þ

The first-order energy, E
ð1Þ
BW; scales as K1 (extensive) and,

together with E0, it restores the HF energy. The second-

order energy is not well-defined as it contains the unknown

E in the denominator. If we make the approximation

E � E0 � E
ð1Þ
BW þ E

ð2Þ
BW; the denominator scales as K1, the

numerator as K-2, and the three-fold k summation gives

rise to a factor of K3, making the overall scaling of E
ð2Þ
BW to
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jWð1ÞMPi ¼
1

4

X

i;j;a;b

X

ki;kj;ka

jUakabkb

ikijkj
ihUakabkb

ikijkj
jV̂ jU0i

f iki

iki
þ f

jkj

jkj
� f aka

aka
� f bkb

bkb

; ð52Þ

jWð2ÞMPi ¼
1

4

X

i;j;a;b

X

ki;kj;ka

jUakabkb

ikijkj
ihUakabkb

ikijkj
jV̂ � E

ð1Þ
MPjWð1Þi

f iki

iki
þ f

jkj

jkj
� f aka

aka
� f bkb

bkb

¼ 1

16

X

i;j;a;b

X

ki;kj;ka

X

k;l;c;d

X

kk ;kl;kc

jUakabkb

ikijkj
ihUakabkb

ikijkj
jV̂ � E

ð1Þ
MPjU

ckcdkd

kkklkl
ihUckcdkd

kkklkl
jV̂ jU0i

f iki

iki
þ f

jkj

jkj
� f aka

aka
� f bkb

bkb

� �
f kkk

kkk
þ f lkl

lkl
� f ckc

ckc
� f dkd

dkd

� � : ð53Þ

E
ð2Þ
MP ¼

1

4

X

i;j;a;b

X

ki;kj;ka

hU0jV̂ jUakabkb

ikijkj
ihUakabkb

ikijkj
jV̂ jU0i

f iki

iki
þ f

jkj

jkj
� f aka

aka
� f bkb

bkb

¼ 1

4

X

i;j;a;b

X

ki;kj;ka

v
ikijkj

akabkb
vakabkb

ikijkj

f iki

iki
þ f

jkj

jkj
� f aka

aka
� f bkb

bkb

; ð55Þ

and

E
ð3Þ
MP ¼

1

16

X

i;j;a;b

X

ki;kj;ka

X

k;l;c;d

X

kk ;kl;kc

hU0jV̂ jUakabkb

ikijkj
ihUakabkb

ikijkj
jV̂ � E

ð1Þ
MPjU

ckcdkd

kkklkl
ihUckcdkd

kkklkl
jV̂ jU0i

f iki

iki
þ f

jkj

jkj
� f aka

aka
� f bkb

bkb

� �
f kkk

kkk
þ f lkl

lkl
� f ckc

ckc
� f dkd

dkd

� �

¼ 1

8

X

i;j;k;l;a;b

X

ki;kj;kk ;ka

v
ikijkj

akabkb
vkkklkl

ikijkj
vakabkb

kkklkl

f iki

iki
þ f

jkj

jkj
� f aka

aka
� f bkb

bkb

� �
f kkk

kkk
þ f lkl

lkl
� f aka

aka
� f bkb

bkb

� �

þ 1

8

X

i;j;a;b;c;d

X

ki;kj;ka;kc

v
ikijkj

akabkb
vakabkb

ckcdkd
vckcdkd

ikijkj

f iki

iki
þ f

jkj

jkj
� f aka

aka
� f bkb

bkb

� �
f iki

iki
þ f

jkj

jkj
� f ckc

ckc
� f dkd

dkd

� �

þ
X

i;j;k;a;b;c

X

ki;kj;kk ;ka

v
ikijkj

akabkb
vkkkbkb

ckcjkj
vakackc

ikikkk

f iki

iki
þ f

jkj

jkj
� f aka

aka
� f bkb

bkb

� �
f iki

iki
þ f kkk

kkk
� f aka

aka
� f ckc

ckc

� � : ð56Þ

be non-physical K0 [12]. If we instead use E � E0 � E
ð2Þ
BW;

an argument similar to the one used in CID leads to the

conclusion that E
ð2Þ
BW scales as K1/2, which is still non-

physical [12]. In either case, the second-order energy per

unit cell, E
ð2Þ
BW=K; tends to zero as K !1: Note that the

presence of an extensive quantity, E - E0, in the denom-

inator is responsible for the lack of size extensivity.

A more useful choice, which leads to the MP series [25],

is ELS = E0 [5, 12]. The first- and second-order wave

functions are given by

To maintain consistency in the perturbation order, we have

used E = E0 in Eq. (52) and E ¼ E0 þ E
ð1Þ
MP in

Eq. (53). In contrast to BW2, the denominators do not

contain an extensive quantity and they scale as K0.

The corresponding energies [13, 25–29] are

E
ð1Þ
MP ¼ hU0jV̂ jU0i ¼ �

1

2

X

i;j

X

ki;kj

v
ikijkj

ikijkj
; ð54Þ
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In the second equality of Eq. (56), we have used the fact

that the following term cancels exactly with a contribution

with the same magnitude and opposite sign:

�E
ð1Þ
MP

4

X

i;j;a;b

X

ki;kj;ka

hU0jV̂ jUakabkb

ikijkj
ihUakabkb

ikijkj
jV̂ jU0i

f iki

iki
þ f

jkj

jkj
� f aka

aka
� f bkb

bkb

� �2
: ð57Þ

It is straightforward to confirm the K1 dependence of

E
ð1Þ
MP; E

ð2Þ
MP; and E

ð3Þ
MP and the non-physical K2 dependence of

Eq. (57).

Diagrammatically, the above equations are expressed as

which are connected. The canceling contribution, on the

other hand, is disconnected as

ð59Þ

Hence, the correlation energies from MP1, MP2, and MP3

are extensive. Systematic cancelation of disconnected terms

in the MP series at all orders was speculated by Brueckner

[30] and proved by Goldstone [23]. The proof is known as the

linked-cluster theorem [23], of which the time-independent

and time-dependent proofs are found in Shavitt and Bartlett

[12] and in March et al. [5] respectively.

The low-order MP correlation energies can be recovered

by making a systematic approximation to CCD, Eqs. (17)

and (20). The correlation energies are given by the iden-

tical formula, but with approximate amplitudes,

1

4

X

i;j;a;b

X

ki;kj;ka

v
ikijkj

akabkb

ðn�1Þtakabkb

ikijkj
¼ E

ðnÞ
MP; n ¼ 2; 3; ð60Þ

where ðn�1Þtakabkb

ikijkj
can be obtained recursively by solving

the following equation, which linearizes the CCD equation,

namely, drops the terms with more than one amplitudes:

vakabkb

ikijkj
� Pi=j

X

k

f kkk

iki

ðnÞtakabkb

kkkjkj
þ Pa=b

X

c

f aka

ckc

ðnÞtckcbkb

ikijkj

þ 1

2

X

k;l

X

kk

vkkklkl

ikijkj

ðn�1Þtakabkb

kkklkl

þ 1

2

X

c;d

X

kc

vakabkb

ckcdkd

ðn�1Þtckcdkd

ikijkj

þ Pa=bPi=j

X

k;c

X

kk

vakakkk

ikickc

ðn�1Þtckcbkb

kkkjkj
¼ 0 ð61Þ

and ð0Þtakabkb

kkkjkj
¼ 0: In this viewpoint, unlike the conven-

tional one based on Rayleigh–Schrödinger perturbation

theory, the low-order MP wave functions are understood to

have the same exponential structure as CCD and the dia-

grammatic energy expression is manifestly connected.

3.6 Configuration-interaction singles for excited states

An analysis analogous to Sect. 3.4 for configuration-

interaction singles (CIS) [31, 32] reveals that its total

energy for the ground state using a HF wave function as the

reference is the total energy of HF itself. Thus, CIS cap-

tures no electron correlation. This must, however, be dis-

tinguished from CID, whose correlation energy decreases

as K-1/2. The CIS correlation energy, unlike the CID

counterpart, remains zero regardless of size and its K

dependence is not incorrect, though it may be considered

irrelevant. In this sense, CIS is size extensive for total

energies of the ground states.

A CIS excited-state wave function is defined by

jWi ¼ Ĉ1jU0i; ð62Þ

where Ĉ1 is a one-electron excitation operator,

Ĉ1jU0i ¼
X

i;a

X

ki

caka

iki
jUaka

iki
i: ð63Þ

The excited-state wave function, jWi; and all singly excited

determinants used as the expansion basis must have the

same total wave vector,

j � ka � ki: ð64Þ

When j ¼ 0; the transition is called direct and, otherwise,

indirect. Equation (62) is incompatible with the inter-

mediate normalization and so we must use the standard

normalization,

1 ¼ hU0jĈy1Ĉ1jU0i ¼
X

i;a

X

ki

jcaka

iki
j2: ð65Þ

This indicates that caka

iki
is a K-1/2 quantity. The above

equation is diagrammed as

ð66Þ

(58)
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where we have used a different symbol (open square) for

the vertex of caka

iki
to underscore the difference in K depen-

dence of the amplitudes between intensive and extensive

operators. We define these two types of operators and the

corresponding vertexes and amplitudes:

Rule 3 (intensive and extensive operators): An intensive

operator is the one whose amplitudes are normalized, while

the amplitudes of an extensive operator are intermediately

normalized. Their corresponding vertexes and amplitudes

are called intensive and extensive vertexes and amplitudes.

The Hamiltonian is an extensive operator.

Throughout this article, we associate letter T with

extensive operators and C with intensive operators. We can

generalize Rule 1 as follows:

Rule 4 (the K dependence of intensive diagrams): A

connected diagram with n external edges, m intensive

vertexes, and any number of extensive vertexes scales as

K1-n/2-m/2.

The open diagram of caka

iki
has two external edges and scales

as K-1/2 and hence it satisfies Rule 4. Note also that the open

diagram of takabkb

ikijkj
in CID scales as K-3/2 and, therefore,

satisfies Rule 4 but not Rule 1. This indicates that its T̂2 is in

fact an intensive operator and unsuitable for describing exten-

sive correlation effects in the ground state, as we have found.

The projection or the variational principle leads to the

equation to be solved for caka

iki
:

hUaka

iki
jĤĈ1jU0i ¼ E

ðnÞ
CIScaka

iki
; ð67Þ

where n labels an electronic state with n = 0 corre-

sponding to the ground state. Expanding this, we arrive at

the sum-of-product expression,

�
X

j

f
jkj

iki
caka

jkj
þ
X

b

f aka

bkb
cbkb

iki
þ
X

j;b

X

kj

v
akajkj

ikibkb
cbkb

jkj
þ EHFcaka

iki

¼ E
ðnÞ
CIScaka

iki
; ð68Þ

where

kb � kj ¼ ka � ki � j ð69Þ

needs to be satisfied in the third term to prevent v
akajkj

ikibkb
from

vanishing and, similarly, ka � kj ¼ kb � ki ¼ j in the first

two terms. The terms in the CIS equation as shown above

have inconsistent K dependence: The first through third

terms scale as K-1/2, whereas the last term and the right-

hand side as K1/2. This inconsistency can be readily

resolved by noticing

E
ðnÞ
CIS ¼ E

ð0Þ
CIS þ xðnÞCIS; ð70Þ

E
ð0Þ
CIS ¼ EHF; ð71Þ

where xðnÞCIS is an excitation energy of the nth state, which

should be a K0 quantity. Using this, we can rewrite Eq. (68) to

�
X

j

f
jkj

iki
caka

jkj
þ
X

b

f aka

bkb
cbkb

iki
þ
X

j;b

X

kj

v
akajkj

ikibkb
cbkb

jkj
¼ xðnÞCIScaka

iki
;

ð72Þ

which has the consistent K-1/2 dependence. Thus, CIS is

size intensive (K0) for xðnÞCIS and size extensive (K1) for

E
ðnÞ
CIS: Multiplying the above equation by caka�

iki
and summing

over i, a, and ki, we obtain

xðnÞCIS ¼ �
X

i;j;a

X

ki

caka�
iki

f
jkj

iki
caka

jkj
þ
X

i;a;b

X

ki

caka�
iki

f aka

bkb
cbkb

iki

þ
X

i;j;a;b

X

ki;kj

caka�
iki

v
akajkj

ikibkb
cbkb

jkj
: ð73Þ

Diagrammatically, Eq. (72) is

ð74Þ

All the diagrams scale consistently as K-1/2, even though

the right-hand side is disconnected. The diagrams for

Eq. (73) are connected and scale correctly as K0:

ð75Þ

We state the following rule for size intensivity.

Rule 5 (the intensive diagram theorem): A method is size

intensive if the following two conditions are met. Firstly, its

expression for an intensive quantity can be cast into the form

that consists of connected diagrams with exactly two

intensive vertexes. Secondly, its equations that determine

intensive (excitation, ionization, electron-attachment, etc.)

amplitudes can be brought to the form that consists of con-

nected diagrams with exactly one intensive vertex or of

disconnected diagrams with one open, connected subdia-

gram having one intensive vertex plus any number of closed,

connected subdiagrams having two intensive vertexes.

This is a sufficient, but more restrictive condition for

size intensivity than the corresponding K-dependence cri-

terion. The derivation of the above rule proceeds as follows.

From Rule 4, we find that a closed, connected diagram

with two intensive vertexes scales as K1-0/2-2/2 = K0 and

is intensive, which corresponds to the second sentence

of the above rule. An open, connected diagram with

one intensive vertex scales as K1-n/2-1/2 = K1/2-n/2, where

n is the number of external edges. An amplitude equation

that contains only such diagrams should, therefore, have
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the consistent K dependence of K1/2-n/2. Furthermore, one

can attach any number of closed, connected subdiagrams

with two intensive vertexes (K0 quantities) to each of these

open diagrams without altering their K1/2-n/2 scaling. Size-

intensive methods can thus have disconnected diagrams

and they usually do.

For an excited state accessible by a direct transition

(j = 0), one may choose to include jU0i among the

expansion basis,

jWi ¼ c0jU0i þ
X

i;a

X

ki

caka

iki
jUaka

iki
i; ð76Þ

where c0 scales as K0 regardless of whether the

intermediate normalization (c0 = 1) or the standard

normalization,

1 ¼ jc0j2 þ
X

i;a

X

ki

jcaka

iki
j2; ð77Þ

is adopted. The ground state is now included in the

determinant space for the diagonalization of the

Hamiltonian matrix. The projection and the variation

both lead to the same set of equations,

X

i;a

X

ki

f iki

aka
caka

iki
¼ xðnÞCISc0; ð78Þ

and

f aka

iki
c0 �

X

j

f
jkj

iki
caka

jkj
þ
X

b

f aka

bkb
cbkb

iki
þ
X

j;b

X

kj

v
akajkj

ikibkb
cbkb

jkj

¼ xðnÞCIScaka

iki
; ð79Þ

where we have used E
ðnÞ
CIS ¼ EHF þ xðnÞCIS: The right-hand

side of Eq. (78) scales as K0. For the left-hand side to scale

in the same way, caka

iki
needs to be a K-1 quantity. This

causes the first term in Eq. (79) to scale differently (as K0)

from the rest of the equation (as K-1). To restore consistent

K dependence, we must, therefore, require that f aka

iki
¼

f iki

aka
¼ 0 (Brillouin’s theorem), namely, that the reference

wave function is HF [14].

The diagrammatic representations of these equations

are

ð80Þ

and

ð81Þ

In the size-consistency analysis, the presence of c0 can be

ignored because of its K0 dependence. The left-hand side of

the first equation is connected, but it has only one intensive

vertex and thus violates the intensive diagram theorem.

The first diagram in the second equation, while connected,

has no intensive vertex and does not conform to the theo-

rem, either. Therefore, they apparently do not define a size-

intensive method unless these violating diagrams are made

to vanish by, in this case, the HF reference and Brillouin’s

theorem.

3.7 Coupled-cluster doubles for excited states

Let us turn to the question of size intensivity of excited-

state CCD, namely, equation-of-motion CCD (EOM-CCD)

[11, 12, 33–38]. Although an excited-state method without

a single excitation operator is not useful in practice, we use

this simple method to clarify its size dependence. From the

discussion in Sect. 3.3, we can formulate CCD in a mani-

festly connected form:

hU0j �HjU0i ¼ E
ð0Þ
CCD; ð82Þ

hUakabkb

ikijkj
j �HjU0i ¼ 0; ð83Þ

with

�H ¼ Ĥ exp T̂2

� �� �
C
; ð84Þ

where the subscript ‘‘C’’ means that the operators in the

bracket are diagrammatically connected and the superscript

‘‘(0)’’ indicates that it pertains to the ground state. Using

pentagram symbols to denote vertexes of �H; we can

express Eq. (83) diagrammatically as

ð85Þ

EOM-CCD is a CID using this CCD effective

Hamiltonian, �H: Thus, we solve

hUakabkb

ikijkj
j �HĈ2jU0i ¼ E

ðnÞ
CCDcakabkb

ikijkj
; ð86Þ

for E
ðnÞ
CCD and fcakabkb

ikijkj
g; where n labels an electronic state

with n = 0 corresponding to the ground state. The intensive

amplitudes are subject to the standard normalization:

X

i;j;a;b

X

ki;kj;ka

jcakabkb

ikijkj
j2 ¼ 1: ð87Þ

Hence, cakabkb

ikijkj
is a K-3/2 quantity. Equation (86) is

expanded as
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�vakabkb

ikijkj
� Pi=j

X

k

�f kkk

iki
cakabkb

kkkjkj
þ Pa=b

X

c

�f aka

ckc
cckcbkb

ikijkj

þ 1

2

X

k;l

X

kk

�vkkklkl

ikijkj
cakabkb

kkklkl
þ 1

2

X

c;d

X

kc

�vakabkb

ckcdkd
cckcdkd

ikijkj

þ Pa=bPi=j

X

k;c

X

kk

�vakakkk

ikickc
cckcbkb

kkkjkj

þ 1

2
Pi=j

X

k;c;d

X

kk ;kc

�wakabkbkkk

ikickcdkd
cckcdkd

jkjkkk

� 1

2
Pa=b

X

k;l;c

X

kk ;kl

�wakakkklkl

ikijkjckc
cbkbckc

kkklkl

þ E
ð0Þ
CCDcakabkb

ikijkj
¼ E

ðnÞ
CCDcakabkb

ikijkj
; ð88Þ

where the integrals with overbars come from �H; but, since

they are connected, they scale exactly the same way as the

counterparts without overbars, according to Rule 1. Hence,

�f
pkp

qkq
; �v

pkpqkq

rkrsks
; and �w

pkpqkqrkr

skstktuku
scale as K0, K-1, and K-2,

respectively. Note that CCD’s �H (unlike Ĥ) has up to a six-

electron excitation operator and up to a two-electron deex-

citation operator. The three-electron excitation operator in �H

gives rise to the three-electron integrals denoted by �w:
This equation does not display consistent scaling. The

first term in the left-hand side scales as K-1 and the second

through the penultimate terms as K-3/2, whereas the last

term and the right-hand side are K-1/2 quantities. The

inconsistencies are resolved by using Eq. (85), namely,

�vakabkb

ikijkj
¼ 0; as well as E

ðnÞ
CCD � E

ð0Þ
CCD ¼ xðnÞCCD: Thus,

� Pi=j

X

k

�f kkk

iki
cakabkb

kkkjkj
þ Pa=b

X

c

�f aka

ckc
cckcbkb

ikijkj

þ 1

2

X

k;l

X

kk

�vkkklkl

ikijkj
cakabkb

kkklkl
þ 1

2

X

c;d

X

kc

�vakabkb

ckcdkd
cckcdkd

ikijkj

þ Pa=bPi=j

X

k;c

X

kk

�vakakkk

ikickc
cckcbkb

kkkjkj

þ 1

2
Pi=j

X

k;c;d

X

kk ;kc

�wakabkbkkk

ikickcdkd
cckcdkd

jkjkkk

� 1

2
Pa=b

X

k;l;c

X

kk ;kl

�wakakkklkl

ikijkjckc
cbkbckc

kkklkl
¼ xðnÞCCDcakabkb

ikijkj
; ð89Þ

which scales consistently as K-3/2. Diagrammatically, this

becomes

These diagrammatic equations satisfy the intensive dia-

gram theorem. Hence, EOM-CCD is size extensive for the

total energy, E
ðnÞ
CCD; and size intensive for the excitation

energy, xðnÞCCD:

3.8 Configuration-interaction doubles for excited states

Is CID size intensive for excitation energies? Excluding

jU0i from the basis, we arrive at the CID equation for an

excitation energy, xðnÞCID ¼ E
ðnÞ
CID � EHF; which can be

expressed diagrammatically as

ð92Þ

where an open square represents cakabkb

ikijkj
; which should now

be normalized as
X

i;j;a;b

X

ki;kj;ka

jcakabkb

ikijkj
j2 ¼ 1 ð93Þ

and be asymptotically proportional to K-3/2. Closing

Eq. (92) by the vertex of cakabkb�
ikijkj

; we obtain the

diagrammatic expression for xðnÞCID;

ð94Þ

Understandably, these diagrammatic equations are subsets

of the corresponding ones of EOM-CCD with each

pentagram vertex (representing parts of �H) replaced by a

filled circle vertex (Ĥ) and, therefore, satisfy the intensive

diagram theorem. CID is in fact size intensive for excita-

tion energies insofar as jU0i is not among the basis

functions.

If jU0i is included, we must solve two sets of equations

instead of one. They are

(90)

where

(91)
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ð95Þ

and

both of which violate the intensive diagram theorem. CID is,

therefore, not size intensive if jU0i is among the basis

functions. The violation arises from the fact that the equality

analogous to Eq. (85) in EOM-CCD or to f aka

iki
¼ f iki

aka
¼ 0 in

CIS with the HF reference does not hold in CID. In other

words, Ĉ2 is responsible for simultaneously capturing both

the extensive correlation energy and intensive excitation

energies, which is not achievable in a size-consistent fashion.

4 Size-consistent design

The extensive and intensive diagram theorems and under-

lying K-dependence criterion provide an unambiguous,

foolproof, and convenient basis on which to decide whether

a method is size consistent, once its formalism—not an

implementation—is given. However, it does not necessar-

ily offer any physical insight as to why some choices of

approximations ensure cancelation of terms that violate the

criterion. In this section, we consider this question of size-

consistent design and make several concrete propositions.

4.1 Size extensivity

Let us recognize that the correlation energies of CCD,

MP2, and CID are all expressed in the identical form,

E ¼ EHF þ
1

4

X

i;j;a;b

X

ki;kj;ka

v
ikijkj

akabkb
takabkb

ikijkj
; ð97Þ

which is diagrammatically connected. This energy expression

is a consequence of the intermediate normalization,

jWi ¼ 1þ T̂2

� �
jU0i; ð98Þ

and the associated projection. The MP1 and CID wave

functions share the same structure given above. While the

CCD wave function has the different, exponential form,

jWi ¼ exp T̂2

� �
jU0i; ð99Þ

as far as the derivation of the above energy expression is

concerned, one might as well define it by Eq. (98). Thus,

the lack of size extensivity in CID cannot be inferred

from the above energy expression alone. It primarily

comes from the amplitude equations, which, in conjunc-

tion with the energy expression, cause the amplitudes of

T̂2 to have the incorrect K dependence as an extensive

operator. It is also wrong to conclude that MP2 is not size

extensive for correlation energies just because the corre-

sponding MP1 wave function has a CID structure. In fact,

CCD and MP2 are size extensive for correlation energies

given by Eq. (97) because their takabkb

ikijkj
scales correctly as

K-1 (Rule 1). CID is not size extensive for correlation

energies because the corresponding amplitudes scale

incorrectly as K-3/2.

Let us consider an alternative energy expression sug-

gested by the variational principle,

E ¼ hWjĤjWihWjWi : ð100Þ

Substituting the MP1 wave function into the numerator, we

obtain [5]

hWjĤjWi ¼ hU0j 1þ T̂y2

� �
Ĥ 1þ T̂2

� �
jU0i ð101Þ

¼ hU0jĤjU0iþ 2hU0jĤT̂2jU0iþ hU0jT̂y2ĤT̂2jU0i ð102Þ

¼ EHF þ 2E
ð2Þ
MP þ hU0jĤjU0ihU0jT̂y2 T̂2jU0i

þ hU0jT̂y2ĤT̂2jU0iC ð103Þ

¼ EHF 1þ hU0jT̂y2 T̂2jU0i
� �

þ 2E
ð2Þ
MP þ hU0jT̂y2V̂T̂2jU0iC

þ hU0jT̂y2Ĥ0T̂2jU0iC ð104Þ

¼ EHF 1þ hU0jT̂y2 T̂2jU0i
� �

þ E
ð2Þ
MP þ E

ð3Þ
MP; ð105Þ

where, in the last equality, the following relationships [5]

are used:

hU0jT̂y2V̂T̂2jU0iC ¼ hU0jV̂
Q̂

E0 � Ĥ0

V̂
Q̂

E0 � Ĥ0

V̂ jU0iC

¼ E
ð3Þ
MP; ð106Þ

hU0jT̂y2Ĥ0T̂2jU0iC ¼ hU0jT̂y2 Ĥ0 � E0

� �
T̂2jU0iC

¼ �hU0jV̂
Q̂

E0 � Ĥ0

V̂ jU0iC ¼ �E
ð2Þ
MP:

ð107Þ

(96)
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With the same substitution, the denominator is

hWjWi ¼ 1þ hU0jT̂y2 T̂2jU0i

¼ 1þ 1

4

X

i;j;a;b

X

ki;kj;ka

jtakabkb

ikijkj
j2; ð108Þ

which scales as K1 because takabkb

ikijkj
is a K-1 quantity. Hence,

the correlation contribution in

E ¼ EHF þ
E
ð2Þ
MP þ E

ð3Þ
MP

1þ hU0jT̂y2 T̂2jU0i
ð109Þ

displays the non-physical K0 dependence because both the

numerator and denominator scale as K1. With the standard

normalization and expectation value, the MP1 wave func-

tion no longer gives extensive correlation energies even

though takabkb

ikijkj
scales correctly!

When we substitute the CCD wave function into the

expectation value, Eq. (100), we find [39]

E ¼
hU0j exp T̂

y
2

� �
Ĥ exp T̂2

� �
jU0i

hU0j exp T̂
y
2

� �
exp T̂2

� �
jU0i

ð110Þ

¼ EHF þ hU0j exp T̂
y
2

� �
Ĥ exp T̂2

� �
jU0iC; ð111Þ

which is manifestly diagrammatically connected and yields

an extensive value when takabkb

ikijkj
scales correctly as K-1,

though it differs from the value obtained by projection,

Eq. (97). CCD is, therefore, size extensive for correlation

energies regardless of whether they are defined by pro-

jection or as expectation values.

In CID, the projection and expectation values coincide.

Hence,

E ¼
hU0j 1þ T̂y2

� �
Ĥ 1þ T̂2

� �
jU0i

hU0j 1þ T̂y2

� �
1þ T̂2

� �
jU0i

ð112Þ

¼ EHF þ hU0jĤT̂2jU0i; ð113Þ

where we have used Eqs. (29) and (30) in the second

equality. Since takabkb

ikijkj
determined by CID does not exhibit

the correct scaling, the correlation energies are not exten-

sive regardless. These observations are summarized in

Table 1 and lead us to the following proposition:

Proposition 1 (the intermediate normalization and size

extensivity): The intermediate normalization and associated

projection ensure a formally extensive energy expression.

The amplitudes that enter this expression, however,

must also scale correctly with K (according to Rule 1) for

the energy to be indeed extensive, but this is not guaranteed

by the intermediate normalization.

What follows is an argument that supports the use of the

intermediate normalization for extensive quantities. Let us

consider a periodic extended system in which there are no

inter-cell interactions [40]. Let us also assume that the

reference wave function is HF and thus invariant to rotation

among occupied orbitals and among virtual orbitals. The

wave function in the intermediate normalization, Eq. (98),

becomes

jWi ¼ jU0i þ
XK

n¼1

jU½1�0 � � � T̂
½n�
2 U½n�0 � � �U

½K�
0 i; ð114Þ

where jU½n�0 i is a HF wave function of the nth unit cell

composed of the Wannier orbitals localized around that

cell,

gpðr� naÞ ¼ K�1=2
X

kp

expð�inkpaÞupkp
ðrÞ; ð115Þ

and T̂
½n�
2 is a double excitation operator acting only on the

function in the nth cell. In the basis of the Wannier orbitals,

the amplitudes of T̂
½n�
2 and two-electron integrals are given by

tab
ij ¼ K�2

X

ki;kj;ka

takabkb

ikijkj
; ð116Þ

vij
ab ¼ K�2

X

ki;kj;ka

v
ikijkj

akabkb
: ð117Þ

The factors of K-2 in these equations originate from the

normalization coefficient K-1/2 in Eq. (115). The quantities

in the left-hand sides do not carry any cell index because of

the periodicity of the extended system and the absence of

any inter-cell interactions. The correct scaling of these

local quantities is K0 and this is satisfied insofar as takabkb

ikijkj

scales correctly as K-1.

Since the Hamiltonian is additively separable in this

case,

Ĥ ¼
XK

n¼1

Ĥ½n�; ð118Þ

the total energy obtained by projection is given by

E ¼ hU0jĤjWi ¼ EHF þ
XK

n¼1

hU½n�0 jĤ½n�T̂
½n�
2 jU

½n�
0 i

¼ EHF þ
K

4

X

i;j;a;b

vij
abtab

ij ; ð119Þ

Table 1 Size extensivity of various methods for correlation energies

in the ground states

CCD MP2 CID

Intermediate normalization and projection yes yes no

Normalization and expectation value yes no no
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where we have used Ĥ½m�jW½n�i ¼ 0 if m = n. The correla-

tion energy (the very last term) is manifestly extensive. This

logic can be readily generalized to the situation in which

there are inter-cell interactions. The intermediate normali-

zation and projection, therefore, implicitly exploit the

locality of chemical interactions (see the next section) and

thereby ensure extensive energy expressions, even though its

wave function, Eq. (114), is not multiplicatively separable.

The expectation value of the Hamiltonian in the above

wave function yields

E ¼ EHF þ
X

Y
; ð120Þ

with

X ¼ K

4

X

i;j;a;b

vij
abtab

ij þ
K

8

X

i;j;k;l;a;b

tab�
ij vkl

ij tab
kl

þ K

8

X

i;j;a;b;c;d

tab�
ij vab

cdtcd
ij þ K

X

i;j;k;a;b;c

tab�
ij vkb

cj tac
ik ;

Y ¼ 1þ K

4

X

i;j;a;b

jtab
ij j

2:

ð121Þ

The correlation energy, therefore, scales as non-physical

K0, merely confirming what we have already established in

Eq. (109). This observation also suggests the following:

Proposition 2 (the standard normalization and size in-

tensivity): The use of the standard normalization and the

expectation value of the Hamiltonian is suitable for

describing an intensive quantity.

The first two propositions are simply the converse of

Rule 3.

An intermediately normalized, exponential wave func-

tion of the same system is given by

jWi ¼
YK

n¼1

jW½n�i; ð122Þ

jW½n�i ¼ exp T̂
½n�
2

� �
jU½n�0 i: ð123Þ

The overall wave function, jWi; is multiplicatively separable

into individual unit-cell wave functions, fjU½n�0 ig: The

projection of this onto the reference wave function leads to

the identical energy expression given above as Eq. (119),

which is extensive. The expectation value of the Hamiltonian

in this wave function is also extensive, which can be verified

easily:

E ¼
PK

n¼1hW½1�jW½1�i � � � hW½n�jĤ½n�jW½n�i � � � hW½K�jW½K�iQK
n¼1hW½n�jW½n�i

¼
XK

n¼1

hW½n�jĤ½n�jW½n�i
hW½n�jW½n�i

: ð124Þ

What would be a guideline for obtaining the correctly

scaling amplitudes of an extensive operator? An

observation from the analyses in the previous section is

the following:

Proposition 3 (non-canceling extensive quantities in

amplitudes): The presence of a non-canceling extensive

quantity in the equation that determines extensive ampli-

tudes tends to cause the violation of size extensivity.

For example, the BW1 wave function has a correlation

energy of the whole system in the denominator of its

definition, which causes the corresponding BW2 energy,

Eq. (51), to be non-extensive. Likewise, the MP2 wave

function has an extensive correlation energy in the

numerator of its definition, Eq. (53), giving rise to the term,

though canceling out eventually, that scales incorrectly.

Diagrammatically, any non-canceling extensive quantity

becomes a closed subdiagram. A multiplication or a divi-

sion by such quantities leads to disconnected diagrams with

closed subdiagrams (which are called ‘‘unlinked’’). This

inevitably violates the extensive diagram theorem (Rule 2).

4.2 Size intensivity

Let us define two complementary spaces of determinants,

which prove useful in the following discussion.

Definition 6 (extensive and intensive determinant

spaces): The extensive determinant space of an operator,

Ĉ; is the space spanned by the determinants reached by the

action of ĈyĈ on jU0i: The intensive determinant space of

Ĉ is the space of the determinants accessible by Ĉ from

jU0i:

For instance, the extensive determinant space of

Ĉ0 þ Ĉ2 consists of jU0i and all doubly excited determi-

nants, where Ĉn denotes an n-electron excitation operator.

The extensive determinant space of Ĉ2 is just jU0i:
CIS, EOM-CCD, and CID can all be cast into a CI

problem with a diagrammatically connected, generalized

Hamiltonian, ~H;

P̂ ~HĈjU0i ¼ P̂EĈjU0i; ð125Þ

where P̂ is the projector onto the intensive determinant

space of Ĉ: In CIS, ~H ¼ Ĥ and Ĉ ¼ Ĉ0 þ Ĉ1 or Ĉ ¼ Ĉ1:

Either of these definitions of Ĉ leads to size-intensive

CIS with the HF reference. In EOM-CCD, ~H ¼ �H and

Ĉ ¼ Ĉ0 þ Ĉ2 or Ĉ ¼ Ĉ2: By virtue of Eq. (85), EOM-CCD

is also size intensive with either choice of Ĉ: On the other

hand, CID ( ~H ¼ Ĥ) has been found to be size intensive

for excitation energies when Ĉ ¼ Ĉ2; but not so when
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Ĉ ¼ Ĉ0 þ Ĉ2: What is then the general guideline to obtain

a size-intensive excited-state method?

Notice that the only way in which the left-hand side of

Eq. (125) is diagrammatically disconnected is

P̂x
~HjU0i

� �
P̂yĈjU0i
� �

; ð126Þ

where P̂ ¼ P̂x þ P̂y because ~H is assumed to be by itself

diagrammatically connected. Since P̂y can be a projector

onto any subspace of the intensive determinant space, P̂x is

necessarily the projector onto the extensive determinant

space of Ĉ defined above.

The analyses of size intensivity in the previous section

suggest that, in size-intensive formalisms, these discon-

nected contributions must vanish, namely, P̂x
~HjU0i ¼ 0

except in the space of jU0i: In the latter space, ~HjU0i can

remain nonzero, yielding the following disconnected

contribution:

hU0j ~HjU0i
� �

P̂ĈjU0i
� �

: ð127Þ

In other words, the CI problem must have the trivial solution,

Ĉ ¼ 1; corresponding to the ground state, within the

extensive determinant space of Ĉ;

P̂x
~HjU0i ¼ P̂xE0jU0i; ð128Þ

where E0 ¼ hU0j ~HjU0i:
Assuming that Eq. (128) is satisfied and subtracting

Eq. (127) from Eq. (125), we obtain

P̂ ~HĈjU0iC ¼ xP̂ĈjU0i; ð129Þ

where x = E - E0 and subscript ‘‘C’’ means that the left-

hand side is diagrammatically connected. This furthermore

leads to

hU0jĈy ~HĈjU0iC ¼ x; ð130Þ

where the amplitudes of the intensive operator, Ĉ; are

assumed to be normalized in accordance with Proposition 2.

These equations succinctly outline the structures of size-

intensive CIS and EOM-CCD equations and satisfy, in the

most general way, the intensive diagram theorem. We thus

summarize this observation as follows:

Rule 6 (the extensive-intensive consistency theorem):

When a method for excited, ionized, or electron-attached

states is defined as a CI problem in the intensive determi-

nant space of Ĉ with some general, diagrammatically

connected Hamiltonian, ~H; for the method to be size

intensive, the CI problem must have the trivial solution,

Ĉ ¼ 1 or ~HjU0i ¼ E0jU0i; corresponding to the ground

state, within the extensive determinant space of Ĉ:

That this condition is met by CIS and EOM-CCD can be

readily verified. Let us consider EOM-CCD. If jU0i is not

included in the intensive determinant space, namely,

Ĉ ¼ Ĉ2; the extensive determinant space is jU0i and
�HjU0i ¼ ECCDjU0i is satisfied in this space. If jU0i is

instead included in the diagonalization space, the extensive

determinant space becomes jU0i plus all doubly excited

determinants. In this space, �HjU0i ¼ ECCDjU0i amounts

exactly to the CCD energy and amplitude equations, Eqs.

(82) and (83), which are again satisfied. EOM-CCD is,

therefore, size intensive for excitation energies regardless

of whether Ĉ ¼ Ĉ2 or Ĉ ¼ Ĉ0 þ Ĉ2: CIS with the HF

reference can likewise be shown to be size intensive with

or without jU0i in the intensive determinant space.

Let us consider CID next. If jU0i is not included in the

intensive determinant space, the extensive determinant

space is jU0i and ĤjU0i ¼ EHFjU0i is a trivial solution

within that space. CID is, therefore, size intensive with this

choice of the intensive determinant space. If jU0i is

included, the extensive determinant space is jU0i plus all

doubly excited determinants. In this space, Ĉ ¼ 1 is not a

solution of the CI equation. Hence, CID is not size inten-

sive in the latter choice of the intensive determinant space.

Let us define EOM-MP2 by EOM-CCD with the

approximation, takabkb

ikijkj
� ð1Þtakabkb

ikijkj
; see Eqs. (60) and (61).

This method is, again, introduced for pedagogical purposes

as it does not have any single excitation operator.

fð1Þtakabkb

ikijkj
g are not the solutions of the CCD equations. For

EOM-MP2 to be size intensive, therefore, jU0i needs to be

excluded from the intensive determinant space so that the

extensive determinant space becomes just jU0i:
Some approximations of EOM-CC have been proposed

in which the spaces of the determinants accessible by T̂ and

Ĉ do not match [41]. For instance, a CI problem using the

CCSD effective Hamiltonian, �H; is solved in the space of

jU0i and its singly, doubly, and triply excited determinants:

Ĉ ¼ Ĉ0 þ Ĉ1 þ Ĉ2 þ Ĉ3: The extensive determinant space

of Ĉ consists of jU0i and its singly, doubly, and triply

excited states. Since the CCSD equation, �HjU0i ¼
ECCSDjU0i; is satisfied only up to the space of doubly

excited determinants, but not in the space of triply excited

determinants, this method is not size intensive. When, on

the other hand, Ĉ0 is excluded from Ĉ; the extensive

determinant space becomes the one accessible by Ĉ0 þ
Ĉ1 þ Ĉ2 from jU0i: With this choice of Ĉ; the method is

size intensive.

EOM-CC has been applied to ionized [42, 43], electron-

attached [42, 44], and even spin-flipped states [45]. For

instance, ionization-potential EOM-CCSD (IP-EOM-CCSD)

[43] solves a CI problem with the CCSD effective Hamil-

tonian within the space of determinants obtained by one-

hole (1h) and two-hole-one-particle (2h1p) creation in jU0i:
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The extensive determinant space of the corresponding

hole-particle operator is jU0i plus all singly excited deter-

minants, in which the CCSD equation, �HjU0i ¼ ECCSDjU0i;
is satisfied. Therefore, IP-EOM-CCSD(1h,2h1p) is size

intensive for ionization energies. IP-EOM-CCSD

(1h, 2h1p, 3h2p) is also size intensive as its extensive

determinant space is jU0i plus the set of all singly and doubly

excited determinants, in which the CCSD equation is still

satisfied.

In physical terms, what Rule 6 suggests is as follows:

Proposition 4 (the separation of extensive and intensive

quantities): The correlation energy in the ground state

should be exhausted by an extensive operator in the

determinant space in which an intensive operator subse-

quently describes excitations or other intensive processes. If

the space acted on by the intensive operator is greater than

that by the extensive operator, the intensive operator can be

used to capture simultaneously the extensive correlation

energy in the ground state and intensive transition energies.

If this happens, the method tends to lack size consistency.

Therefore, the order in which extensive and intensive

operators are applied matters; the application of an exten-

sive operator must precede that of an intensive operator, as

may also be suggested by linear and nonlinear response

theories [34, 35, 37, 46]. A number of methods seem to

violate this provision and, consequently, not size consistent

[47–54].

5 The origin of extensivity

Extensivity of energies of usual chemical systems is an

experimental observation and has been treated as a postu-

late in this article and in thermochemistry [1]. It is by no

means a trivial property. Outside and within chemistry, one

can find systems whose energies are not necessarily

extensive. For example, the energy of a uniform mass

density bound by gravitational forces increases asymptot-

ically as V5/3 with volume V in three dimensions, as V3/2 in

two dimensions, and as V ln V in one dimension, all of

which are non-extensive. The energy of a uniform electron

gas without a neutralizing positive charge background also

grows as V5/3 in three dimensions. These counterexamples

suggest that the extensivity of energy or the existence of a

thermodynamic (infinite-volume) limit of energy density

[15–20] relies on some tacit assumptions. Most impor-

tantly, the system must be electrically neutral for the

thermodynamic limit to exist [17].

With this assumption, we can divide the effective

interactions between two unit cells in an infinitely exten-

ded, electrically neutral, periodic, non-metallic solid into

the electrostatic (EE), exchange (EX), and correlation (EC)

interactions. We can show [55–60] that these three inter-

actions display asymptotic distance (r) decay that can be

expressed as

EE ¼ l� lð Þr�3 � 3 l� rð Þ2r�5; ð131Þ
EX ¼ C1 exp �C2rð Þ; ð132Þ

EC ¼ C3r�6; ð133Þ

where l is the permanent dipole moment of the unit cell,

C1 is a constant, C2 is a positive constant, and C3 is a

negative constant. Since the unit cells are neutral, the

leading electrostatic interaction is of dipole–dipole type as

shown in the first of these equations [9, 55].

The exchange [56–58] and correlation [59, 60] interac-

tions decay sufficiently rapidly that their lattice sums in

one, two, and three-dimensional solids should converge at

finite, intensive values, which are the respective energies

per unit cell. The electrostatic interaction, as given in

Eq. (131), asymptotically decays as r-3 and appears to

cause a logarithmic divergence in its lattice sum of a three-

dimensional solid. However, this can be shown to be

avoided by rearranging the lattice sum spherically and

approximating its long-range part by the integral,

1

V0

Z 1

r0

Z p

0

Z 2p

0

l� lð Þr�3 � 3 l� rð Þ2r�5
n o

r2dr sin hdhd/

¼ 4p
V0

Z 1

r0

l2r�1dr

� 2p
V0

Z 1

r0

l2r�1dr

Z p

0

3cos2hsin hdh ¼ 0; ð134Þ

where V0 is the volume of the unit cell and r0 is the onset of

the asymptotic regime. This proves the intensivity of the

energy per unit cell and the extensivity of the energy of a

non-metallic solid with electrically neutral unit cells. We,

thus, state the following rule:

Rule 7 (the thermodynamic interaction asymptote

theorem): The energy of a periodic system of interacting

particles is extensive and obeys the laws of thermody-

namics if the effective inter-cell interaction is pairwise and

decays asymptotically as 1� 3cos2hð Þr�3 or more rapidly

with distance r and inclination h.

This is a weaker (thus more preferable) condition than

the one introduced earlier stating that the asymptote of

r�3�� with �[ 0 is necessary to ensure the existence of a

thermodynamic limit [15, 19]. It is also only a sufficient

condition and, if not satisfied, can mean that the energy is

non-extensive.

Rule 8 (the existence of a thermodynamic limit of energy

density): The effective inter-cell interactions in an electri-

cally neutral, periodic, non-metallic solid decay at least as
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rapidly as the thermodynamic interaction asymptote and,

therefore, its energy is extensive.

The exchange interactions in metals decay much more

slowly than Eq. (132) and may become dominant in the

limit r !1: Therefore, the above argument leading to

Rule 8 does not apply to metals. The proof of the exten-

sivity of energies for metals will be given in a forthcoming

article [61].

The foregoing is a simpler, but more restricted proof of

the existence of a thermodynamic limit of energy density.

This question has been posed in rigorous mathematical

terms and proven by Lebowitz and Lieb for real matter

consisting of mobile electrons and nuclei [17], by Feffer-

man for perfect crystals [62], and by Hainzl et al. for

crystals with defects [63, 64].

6 Size consistency of the HF theory redux

If a total energy is not necessarily extensive, how can

various electronic structure methods be shown to be size

consistent? Let us reexamine the K dependence of f
pkp

qkq
and

v
pkpqkq

rkrsks
; upon which the foregoing analysis on size consis-

tency is based. They are defined by

f
pkp

qkq
¼ � 1

2

Z
u�pkp
ðrÞr2uqkq

ðrÞdr

þ
X

i

X

ki

v
pkpiki

qkqiki
; ð135Þ

v
pkpqkq

rkrsks
¼
ZZ ~fpkprkr

ðr1Þ~fqkqsks
ðr2Þ

r12

dr1dr2

�
ZZ

fpkpsks
ðr1Þfqkqrkr

ðr2Þ
r12

dr1dr2; ð136Þ

where the orbital-pair densities, ~fpkpqkq
ðrÞ and fpkpqkq

ðrÞ; are

given by

fpkpqkq
ðrÞ ¼ u�pkp

ðrÞuqkq
ðrÞ; ð137Þ

~fpkpqkq
ðrÞ ¼ fpkpqkq

ðrÞ � dpqdkpkq

qNðrÞ
NK

; ð138Þ

with the nuclear charge density,

qNðrÞ ¼
X

I

X

m

ZId r� rI þ mað Þ: ð139Þ

Here, N is the number of electrons per unit cell, I labels the

nucleus with charge ZI centered at rI ; and m is the unit-cell

index. Note that the second term in the right-hand side of

Eq. (138) ensures the charge neutrality of ~fpkpqkq
ðrÞ;

Z
~fpkpqkq

ðrÞdr ¼ 0: ð140Þ

Therefore, ~fpkpqkq
ðrÞ can have unit-cell dipole and higher

moments, but not unit-cell charges. The magnitudes of

these dipole and higher multipole moments are propor-

tional to K-1 because the orbitals are normalized in the

whole volume. Both terms of Eq. (136) for the types of

v
pkpqkq

rkrsks
that appear in HF and electron-correlation methods

physically represent sums of electrostatic interactions in

the lattice of the dipole and higher multipole moments.

According to Rule 7, these lattice sums are extensive and

thus scale as ðK�1Þ2K1 ¼ K�1: This proves the K-1

dependence of v
pkpqkq

rkrsks
:

The kinetic-energy integrals in the definition of f
pkp

qkq

scale as K0, which can be inferred from the fact that the

orbitals are normalized in the whole volume. The second

term is also a K0 quantity because of the K-1 dependence

of v
pkpiki

qkqiki
: This proves the K0 dependence of f

pkp

qkq
: Substi-

tuting Eqs. (135) and (136) into the HF energy expression,

Eq. (9), we recover the correct result,

EHF ¼ �
1

2

X

i

X

ki

Z
u�iki
ðrÞr2uiki

ðrÞdr

þ 1

2

X

i;j

X

ki;kj

ZZ juiki
ðr1Þj2jujkj

ðr2Þj2

r12

dr1dr2

�
X

i

X

ki

X

I

X

m

Z
ZI juiki

ðrÞj2

jr� rI þ maj dr

þ 1

2

X

I;J

X

m1;m2

ZIZJ

jrI � m1a� rJ þ m2aj

� 1

2

X

i;j

X

ki;kj

ZZ u�iki
ðr1Þujkj

ðr1Þu�jkj
ðr2Þuiki

ðr2Þ
r12

dr1dr2:

ð141Þ

It should be understood that the contributions with van-

ishing denominators are excluded from the nuclear-repul-

sion energy (the fourth term). Three observations are in

order. Firstly, terms in this energy expression are not

necessarily individually extensive; The second, third, and

fourth terms are non-extensive and only their sum is pos-

sibly extensive. Secondly, the particular definitions of f
pkp

qkq

and v
pkpqkq

rkrsks
given in Eqs. (135) and (136) are crucial for

establishing the size extensivity of HF and electron-corre-

lation methods and they depend critically on the local

electrical neutrality expected in a system with an extensive

total energy. Thirdly, these definitions of f
pkp

qkq
and v

pkpqkq

rkrsks

differ from the conventional definitions widely adopted by

chemists, if not from those of physicists. This last obser-

vation leads to the following proposition:
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Proposition 5 (the size-consistent Hamiltonian): The

correct definitions of the one- and two-electron integrals in

the Hamiltonian are given by Eqs. (135)–(138). For size

consistency, the HF equations must be revised with these

definitions.

These new, correct definitions of f
pkp

qkq
and v

pkpqkq

rkrsks
do not

alter the HF energy, HF molecular orbitals, or correlation

energies, but they make the lattice sums in f
pkp

qkq
converge

much more rapidly [65].
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